主成分分析(PCA)是大数据时代的维度减少的Workhorse工具。虽然经常被忽视,但PCA的目的不仅可以减少数据维度,而且还要产生不相关的功能。此外,现代世界中不断增加的数据量通常需要在多台机器上存储数据样本,这会排除使用集中式PCA算法。本文重点介绍了PCA的双重目标,即功能的维度和特征的脱钩,但在分布式环境中。这需要估计数据协方差矩阵的特征向量,而不是仅估计特征向量跨越的子空间,当数据分布在机器网络上时。尽管最近已经提出了几种分布式PCA问题的分布式解决方案,但这些解决方案的收敛保证和/或通信开销仍然是一个问题。随着通信效率的眼睛,介绍了一种基于前馈神经网络的一种时级分布式PCA算法,其被称为分布式Sanger的算法(DSA),该算法(DSA)估计数据协方差矩阵的特征向量,当数据分布在一个无向连接的网络上时机器。此外,所提出的算法被示出为线性地收敛到真实解决方案的邻域。还提供了数值结果以证明所提出的解决方案的功效。
translated by 谷歌翻译
Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Graphic layout designs play an essential role in visual communication. Yet handcrafting layout designs are skill-demanding, time-consuming, and non-scalable to batch production. Although generative models emerge to make design automation no longer utopian, it remains non-trivial to customize designs that comply with designers' multimodal desires, i.e., constrained by background images and driven by foreground contents. In this study, we propose \textit{LayoutDETR} that inherits the high quality and realism from generative modeling, in the meanwhile reformulating content-aware requirements as a detection problem: we learn to detect in a background image the reasonable locations, scales, and spatial relations for multimodal elements in a layout. Experiments validate that our solution yields new state-of-the-art performance for layout generation on public benchmarks and on our newly-curated ads banner dataset. For practical usage, we build our solution into a graphical system that facilitates user studies. We demonstrate that our designs attract more subjective preference than baselines by significant margins. Our code, models, dataset, graphical system, and demos are available at https://github.com/salesforce/LayoutDETR.
translated by 谷歌翻译
Semantic segmentation of UAV aerial remote sensing images provides a more efficient and convenient surveying and mapping method for traditional surveying and mapping. In order to make the model lightweight and improve a certain accuracy, this research developed a new lightweight and efficient network for the extraction of ground features from UAV aerial remote sensing images, called LDMCNet. Meanwhile, this research develops a powerful lightweight backbone network for the proposed semantic segmentation model. It is called LDCNet, and it is hoped that it can become the backbone network of a new generation of lightweight semantic segmentation algorithms. The proposed model uses dual multi-scale context modules, namely the Atrous Space Pyramid Pooling module (ASPP) and the Object Context Representation module (OCR). In addition, this research constructs a private dataset for semantic segmentation of aerial remote sensing images from drones. This data set contains 2431 training sets, 945 validation sets, and 475 test sets. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an average intersection-over-union ratio (mIoU) of 71.12%. 7.88% higher than the baseline model. In order to verify the effectiveness of the proposed model, training on the public datasets "LoveDA" and "CITY-OSM" also achieved excellent results, achieving mIoU of 65.27% and 74.39%, respectively.
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译
We study a challenging task, conditional human motion generation, which produces plausible human motion sequences according to various conditional inputs, such as action classes or textual descriptors. Since human motions are highly diverse and have a property of quite different distribution from conditional modalities, such as textual descriptors in natural languages, it is hard to learn a probabilistic mapping from the desired conditional modality to the human motion sequences. Besides, the raw motion data from the motion capture system might be redundant in sequences and contain noises; directly modeling the joint distribution over the raw motion sequences and conditional modalities would need a heavy computational overhead and might result in artifacts introduced by the captured noises. To learn a better representation of the various human motion sequences, we first design a powerful Variational AutoEncoder (VAE) and arrive at a representative and low-dimensional latent code for a human motion sequence. Then, instead of using a diffusion model to establish the connections between the raw motion sequences and the conditional inputs, we perform a diffusion process on the motion latent space. Our proposed Motion Latent-based Diffusion model (MLD) could produce vivid motion sequences conforming to the given conditional inputs and substantially reduce the computational overhead in both the training and inference stages. Extensive experiments on various human motion generation tasks demonstrate that our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks, with two orders of magnitude faster than previous diffusion models on raw motion sequences.
translated by 谷歌翻译
Significant progress has been made in learning image classification neural networks under long-tail data distribution using robust training algorithms such as data re-sampling, re-weighting, and margin adjustment. Those methods, however, ignore the impact of data imbalance on feature normalization. The dominance of majority classes (head classes) in estimating statistics and affine parameters causes internal covariate shifts within less-frequent categories to be overlooked. To alleviate this challenge, we propose a compound batch normalization method based on a Gaussian mixture. It can model the feature space more comprehensively and reduce the dominance of head classes. In addition, a moving average-based expectation maximization (EM) algorithm is employed to estimate the statistical parameters of multiple Gaussian distributions. However, the EM algorithm is sensitive to initialization and can easily become stuck in local minima where the multiple Gaussian components continue to focus on majority classes. To tackle this issue, we developed a dual-path learning framework that employs class-aware split feature normalization to diversify the estimated Gaussian distributions, allowing the Gaussian components to fit with training samples of less-frequent classes more comprehensively. Extensive experiments on commonly used datasets demonstrated that the proposed method outperforms existing methods on long-tailed image classification.
translated by 谷歌翻译
Early-exiting dynamic neural networks (EDNN), as one type of dynamic neural networks, has been widely studied recently. A typical EDNN has multiple prediction heads at different layers of the network backbone. During inference, the model will exit at either the last prediction head or an intermediate prediction head where the prediction confidence is higher than a predefined threshold. To optimize the model, these prediction heads together with the network backbone are trained on every batch of training data. This brings a train-test mismatch problem that all the prediction heads are optimized on all types of data in training phase while the deeper heads will only see difficult inputs in testing phase. Treating training and testing inputs differently at the two phases will cause the mismatch between training and testing data distributions. To mitigate this problem, we formulate an EDNN as an additive model inspired by gradient boosting, and propose multiple training techniques to optimize the model effectively. We name our method BoostNet. Our experiments show it achieves the state-of-the-art performance on CIFAR100 and ImageNet datasets in both anytime and budgeted-batch prediction modes. Our code is released at https://github.com/SHI-Labs/Boosted-Dynamic-Networks.
translated by 谷歌翻译
Intent classification and slot filling are two core tasks in natural language understanding (NLU). The interaction nature of the two tasks makes the joint models often outperform the single designs. One of the promising solutions, called BERT (Bidirectional Encoder Representations from Transformers), achieves the joint optimization of the two tasks. BERT adopts the wordpiece to tokenize each input token into multiple sub-tokens, which causes a mismatch between the tokens and the labels lengths. Previous methods utilize the hidden states corresponding to the first sub-token as input to the classifier, which limits performance improvement since some hidden semantic informations is discarded in the fine-tune process. To address this issue, we propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby generating the context features that contribute to slot filling. Specifically, we encode the hidden states corresponding to multiple sub-tokens into a context vector via the attention mechanism. Then, we feed each context vector into the slot filling encoder, which preserves the integrity of the sentence. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on two public benchmark datasets. The F1 score of the slot filling in particular has been improved from 96.1 to 98.2 (2.1% absolute) on the ATIS dataset.
translated by 谷歌翻译